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Abstract—Search over encrypted data is a critically important enabling technique in cloud computing, where encryption-before-

outsourcing is a fundamental solution to protecting user data privacy in the untrusted cloud server environment. Many secure search

schemes have been focusing on the single-contributor scenario, where the outsourced dataset or the secure searchable index of the

dataset are encrypted and managed by a single owner, typically based on symmetric cryptography. In this paper, we focus on a

different yet more challenging scenario where the outsourced dataset can be contributed from multiple owners and are searchable by

multiple users, i.e., multi-user multi-contributor case. Inspired by attribute-based encryption (ABE), we present the first attribute-based

keyword search scheme with efficient user revocation (ABKS-UR) that enables scalable fine-grained (i.e., file-level) search

authorization. Our scheme allows multiple owners to encrypt and outsource their data to the cloud server independently. Users can

generate their own search capabilities without relying on an always online trusted authority. Fine-grained search authorization is also

implemented by the owner-enforced access policy on the index of each file. Further, by incorporating proxy re-encryption and lazy

re-encryption techniques, we are able to delegate heavy system update workload during user revocation to the resourceful

semi-trusted cloud server. We formalize the security definition and prove the proposed ABKS-UR scheme selectively secure against

chosen-keyword attack. To build confidence of data user in the proposed secure search system, we also design a search result

verification scheme. Finally, performance evaluation shows the efficiency of our scheme.

Index Terms—Cloud computing, attribute-based keyword search, fine-grained owner-enforced search authorization, multi-user search,

verifiable search
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1 INTRODUCTION

CLOUD computing has emerged as a new enterprise IT
architecture. Many companies are moving their appli-

cations and databases into the cloud and start to enjoy
many unparalleled advantages brought by cloud comput-
ing, such as on-demand computing resource configuration,
ubiquitous and flexible access, considerable capital expendi-
ture savings, etc. However, privacy concern has remained a
primary barrier preventing the adoption of cloud comput-
ing by a broader range of users/applications. When sensi-
tive data are outsourced to the cloud, data owners naturally

become concerned with the privacy of their data in the
cloud and beyond. Encryption-before-outsourcing has been
regarded as a fundamental means of protecting user data
privacy against the cloud server (CS) [1], [2], [3], [4]. How-
ever, how the encrypted data can be effectively utilized
then becomes another new challenge. Significant attention
has been given and much effort has been made to address
this issue, from secure search over encrypted data [5],
secure function evaluation [6], to fully homomorphic
encryption systems [7] that provide generic solution to the
problem in theory but are still too far from being practical
due to the extremely high complexity.

This paper focuses on the problem of search over
encrypted data, which is an important enabling technique
for the encryption-before-outsourcing privacy protection
paradigm in cloud computing, or in general in any net-
worked information system where servers are not fully
trusted. Much work has been done, with majority focusing
on the single-contributor scenario, i.e., the dataset to be
searched is encrypted and managed by a single entity,
which we call owner or contributor in this paper. Under this
setting, to enable search over encrypted data, the owner has
to either share the secret key with authorized users [5], [8],
[9], or stay online to generate the search trapdoors, i.e., the
“encrypted” form of keywords to be searched, for the users
upon request [10], [11]. The same symmetric key will be
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used to encrypt the dataset (or the searchable index of the
dataset) and to generate the trapdoors. These schemes seri-
ously limit the users’ search flexibility.

Consider a file sharing system that hosts a large number of
files, contributed from multiple owners and to be shared
among multiple users (e.g., 4shared.com, mymedwall.com).
This is a more challenging multi-owner multi-user scenario.
How to enable multiple owners to encrypt and add their
data to the system and make it searchable by other users?
Moreover, data owners may desire fine-grained search
authorization that only allows their authorized users to
search their contributed data. By fine-grained, we mean the
search authorization is controlled at the granularity of per
file level. Symmetric cryptography based schemes [5], [8], [9]
are clearly not suitable for this setting due to the high com-
plexity of secret keymanagement. Although authorized key-
word search can be realized in single-owner setting by
explicitly defining a server-enforced user list that takes the
responsibility to control legitimate users’ search capabilities
[12], [13], i.e., search can only be carried out by the server
with the assistance of legitimate users’ complementary keys
on the user list, these schemes did not realize fine-grained
owner-enforced search authorization and thus are unable to
provide differentiated access privileges for different users
within a dataset. Asymmetric cryptography is better suited
to this dynamic setting by encrypting individual contribu-
tion with different public keys. For example, Hwang and Lee
[14] implicitly defined a user list for each file by encrypting
the index of the file with all the public keys of the intended
users. However, extending such user list approach to the
multi-owner setting and on a per file basis is not trivial as it
would impose significant scalability issue considering a
potential large number of users and files supported by the
system. Additional challenges include how to handle the
updates of the user lists in the case of user enrollment, revo-
cation, etc., under the dynamic cloud environment.

In this paper, we address these open issues and present
an authorized keyword search scheme over encrypted
cloud data with efficient user revocation in the multi-user
multi-data-contributor scenario. We realize fine-grained
owner-enforced search authorization by exploiting ciphertext
policy attribute-based encryption (CP-ABE) technique. Spe-
cifically, the data owner encrypts the index of each file with
an access policy created by him, which defines what type of
users can search this index. The data user generates the
trapdoor independently without relying on an always
online trusted authority (TA). The cloud server can search
over the encrypted indexes with the trapdoor on a user’s
behalf, and then returns matching result if and only if the
user’s attributes associated with the trapdoor satisfy the
access policies embedded in the encrypted indexes. We dif-
ferentiate attributes and keywords in our design. Keywords
are actual content of the files while attributes refer to the
properties of users. The system only maintains a limited
number of attributes for search authorization purpose. Data
owners create the index consisting of all keywords in the
file but encrypt the index with an access structure only
based on the attributes of authorized users, which makes
the proposed scheme more scalable and suitable for the
large scale file sharing system. In order to further release
the data owner from the burdensome user membership

management, we use proxy re-encryption [15] and lazy re-
encryption [16] techniques to shift the workload as much as
possible to the CS, by which our proposed scheme enjoys
efficient user revocation. Formal security analysis shows
that the proposed scheme is provably secure and meets var-
ious search privacy requirements. Furthermore, we design a
search result verification scheme and make the entire search
process verifiable. Performance evaluation demonstrates
the efficiency and practicality of the ABKS-UR. Our contri-
butions can be summarized as follows:

1) We design a novel and scalable authorized keyword
search over encrypted data scheme supporting mul-
tiple data users and multiple data contributors. Com-
pared with existing works, our scheme supports
fine-grained owner-enforced search authorization at
the file level with better scalability for large scale sys-
tem in that the search complexity is linear to the
number of attributes in the system, instead of the
number of authorized users.

2) Data owner can delegate most of computationally
intensive tasks to the CS, which makes the user revo-
cation process efficient and is more suitable for cloud
outsourcing model.

3) We formally prove our proposed scheme selectively
secure against chosen-keyword attack.

4) We propose a scheme to enable authenticity check
over the returned search result in the multi-user
multi-data-contributor search scenario.

2 RELATED WORK

2.1 Keyword Search over Encrypted Data

2.1.1 Secret Key versus Public Key

Encrypted data search has been studied extensively in the
literature. Song et al. [5] designed the first searchable
encryption scheme to enable a full text search over
encrypted files. Since this seminal work, many secure
search schemes have been proposed to boost the efficiency
and enrich the search functionalities based on either secret-
key cryptography (SKC) [8], [9], [10], [11] or public-key
cryptography (PKC) [17], [18], [19]. Curtmola et al. [8] pre-
sented an efficient single keyword encrypted data search
scheme by adopting inverted index structure. The authors
in [9] designed a dynamic version of [8] with the ability to
add and delete files efficiently. To enrich search functionali-
ties, Cao et al. [10] proposed the first privacy-preserving
multi-keyword ranked search scheme over encrypted cloud
data using “coordinate matching” similarity measure. Later
on, Sun et al. [11] presented a secure multi-keyword text
search scheme in the cloud enjoying more accurate search
result by “cosine similarity measure” in the vector space
model and practically efficient search process using a tree-
based secure index structure. Compared with symmetric
search techniques, PKC-based search schemes are able to
generate more flexible and more expressive search queries.
In [17], Boneh et al. devised the first PKC-based encrypted
data search scheme supporting single keyword query. The
scheme from [18] supports search queries with conjunctive
keywords by explicitly indicating the number of encrypted
keywords in an index. Predicate encryption [19], [20] is
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another promising technique to fulfill the expressive secure
search functionality. For example, the proposed scheme in
[19] supports conjunctive, subset, and range queries, and
disjunctions, polynomial equations, and inner products
could be realized in [20].

2.1.2 Authorized Keyword Search

To grant multiple users the search capabilities, user
authorization should be enforced. In [12], [13], the authors
adopt a server-enforced user list containing all the legiti-
mate users’ complementary keys that are used to help
complete the search in the enterprise scenario to realize
search authorization. But these SKC-based schemes only
allow one data contributor in the system. Hwang and Lee
[14] in the public-key setting presented a conjunctive key-
word search scheme in multi-user multi-owner scenario.
But this scheme is not scalable under the dynamic cloud
environment because the size of the encrypted index and
the search complexity is proportional to the number of
the authorized users, and to add a new user, the data
owner has to rewrite all the corresponding indexes. By
exploiting hierarchical predicate encryption, Li et al. [21]
proposed a file-level authorized private keyword search
(APKS) scheme over encrypted cloud data. However, it
incurs additional communication cost, since whenever
users want to search, they have to resort to the attribute
authority to acquire the search capabilities. Moreover,
this scheme is more suitable for the structured database
that contains only limited number of keywords. The
search time there is proportional to the total number of
keywords in the system, which would be inefficient for
arbitrarily-structured data search, e.g., free text search, in
the case of dynamic file sharing system.

2.2 Verifiable Search Based on Authenticated Index
Structure

In the plaintext information retrieval, many schemes have
been proposed to achieve verifiable search using authenti-
cated data structures (e.g., Merkle hash tree and crypto-
graphic signature) [22], [23] in case the erroneous or false
search result returned by the server due to software/hard-
ware failure, data corruption, etc. In the encrypted data
search scenario, Wang et al. [24] proposed a single keyword
search scheme with inverted index being the index struc-
ture, upon which they use hash chain to build a search
result verification scheme. Recently, Sun et al. [25] pre-
sented a search result verification scheme in the multi-key-
word text search scenario by turning the proposed secure
index tree into an authenticated one. Note that these works
are devised for the single-user search setting. We cannot
directly apply them in our multi-user multi-data-contribu-
tor scenario.

2.3 Attribute-Based Encryption

There has been a great interest in developing attribute-
based encryption [28], [29], [30], [31] due to its fine-grained
access control property. Goyal et al. [28] designed the first
key policy attribute-based encryption scheme, where
ciphertext can be decrypted only if the attributes that are
used for encryption satisfy the access structure on the user

private key. Under the reverse situation, CP-ABE allows
user private key to be associated with a set of attributes and
ciphertext associated with an access structure. CP-ABE is a
preferred choice when designing an access control mecha-
nism in a broadcast environment. Since the first construc-
tion of CP-ABE [29], many works have been proposed for
more expressive, flexible and practical versions of this tech-
nique. Cheung and Newport [30] proposed a selectively
secure CP-ABE construction in the standard model using
the simple Boolean function, i.e., AND gate. By adopting
proxy re-encryption and lazy re-encryption techniques, Yu
et al. [31] also devised a selectively secure CP-ABE scheme
with the ability of attribute revocation, which is perfectly
suitable for the data-outsourced cloud model.

3 PROBLEM FORMULATION

3.1 System Model

The system framework of our proposed ABKS-UR scheme
involves three entities: cloud server, many data owners, and
many data users, as shown in Fig. 1. In addition, a trusted
authority is implicitly assumed to be in charge of generat-
ing and distributing public keys, private keys, and re-
encryption keys. To enforce fine-grained authorized key-
word search, the data owner generates the secure indexes
with attribute-based access policies before outsourcing
them along with the encrypted data into the CS. Note that
we can encrypt data by any secure encryption technique,
such as AES, which is outside the scope of this paper. To
search the datasets contributed from various data owners,
a data user generates a trapdoor of keyword of interest
using his private key and submits it to the CS. So as to
accelerate the entire search process, we first enforce the
coarse-grained dataset search authorization with the per-
dataset user list such that search does not need to go to a
particular dataset if the user is not on the corresponding
user list. Next, the fine-grained file-level search authoriza-
tion is applied on the authorized dataset in the sense that
only users, who are granted to access a particular file, can
search this file for the intended keyword. More precisely,
the data owner defines an access policy for each uploaded
file. The CS will search the corresponding datasets and
return the valid search result to the user if and only if the
attributes of the user on the trapdoor satisfy the access
policies of the secure indexes of the returned files, and the
intended keyword is found in these files.

Fig. 1. Framework of authorized keyword search over encrypted cloud
data.
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3.2 Threat Model

We consider the CS honest-but-curious, which is also
employed by related works on secure search over encrypted
data [10], [11], [21]. We assume that the CS honestly follows
the designated protocol, but curiously infers additional pri-
vacy information based on the data available to him. Fur-
thermore, malicious data users may collude to access files
beyond their access privileges by using their secret keys.
Analogue to [31], as we delegate most of the system update
workload to the CS, we assume that the CS will not collude
with the revoked malicious users to help them gain unau-
thorized access privileges.

3.3 Design Goals

Our proposed ABKS-UR scheme in the cloud aims to
achieve the following functions and security goals:

Authorized keyword search. The secure search system
should enable data-owner-enforced search authorization,
i.e., only users that meet the owner-defined access policy
can obtain the valid search result. Besides achieving fine-
grained authorization, another challenge is to make the
scheme scalable for dynamic cloud environment.

Supporting multiple data contributors and data users. The
designed scheme should accommodate many data contribu-
tors and data users. Each user is able to search over the
encrypted data contributed from multiple data owners.

Efficient user revocation. Another important design goal is
to efficiently revoke users from the current system while
minimizing the impact on the remaining legitimate users.

Authenticity of search result. To make the proposed autho-
rized keyword search scheme verifiable and enable data
user to check the authenticity of the returned search result.

Security goals. In this paper, we are mainly concerned
with secure search related privacy requirements, and define
them as follows. 1) Keyword semantic security. Since we pres-
ent a novel attribute-based keyword search technique, we
will formally prove it semantically secure against chosen key-
word attack under selective ciphertext policy model (IND-sCP-
CKA). The related security definition and semantic security
game used in the proof are presented in Section 4.4. 2)
Trapdoor unlinkability. This security property makes the CS
unable to visually distinguish two or more trapdoors even
containing the same keyword. Note that the attacker may
launch dictionary attack by using public key to generate
arbitrary number of indexes with keyword of his choice,
and then search these indexes with a particular trapdoor to
deduce the underlying keyword in the trapdoor, which is
referred to as predicate privacy and it cannot be protected
inherently in the PKC-based search scenario [32]. Consistent
with existing asymmetric secure search schemes [17], [21],
this paper does not consider protection of predicate privacy.
Moreover, we do not aim to hide access pattern in our
scheme due to the extremely high complexity, i.e., to protect
it, algorithm has to “touch” the whole dataset [33].

4 THE PROPOSED AUTHORIZED KEYWORD

SEARCH

We exploit the CP-ABE [30], [31] technique to achieve
scalable fine-grained authorized keyword search over
encrypted cloud data supporting multiple data owners and

data users. Specifically, for each file, the data owner gener-
ates an access-policy-protected secure index, where the
access structure is expressed as a series of AND gates. Only
authorized users with attributes satisfying the access poli-
cies can obtain matching result. Moreover, we should con-
sider user membership management carefully in the multi-
user setting. A na€ıve solution is to impose the burden on
each data owner. As a result, data owner is required to be
always online to promptly respond the membership update
request, which is impractical and inefficient. By using proxy
re-encryption [15], the data owner can delegate most of the
workload to the cloud without infringing search privacy.

4.1 Algorithm Definition

We define the algorithms used in our ABKS-UR scheme in
this section with main notations listed in Table 1. Here we
consider a series of AND gates

V
i2I i.

Definition 1. An attribute-based keyword search with efficient
user revocation scheme for keyword space W and access
structure space G consists of nine fundamental algorithms as
follows:

� Setupð�;NÞ ! ðPK;MKÞ. The setup algorithm
takes as input the security parameter � and an attri-
bute universe description N . It defines a bilinear group
G of prime order p with a generator g. Thus, a bilinear
map is defined as e : G� G! G1, which has the prop-
erties of bilinearity, computability and non-degen-
eracy. It outputs the public parameters PK and the
master secret key MK. The version number ver is ini-
tialized as 1.

� CreateULðPK; IDÞ ! UL. The user list generation
algorithm takes as input PK and the user identity ID.
It outputs the user list UL for a dataset.

� EncIndexðPK;GT;wÞ ! D. The index encryption
algorithm takes as input the current PK, the access
structure GT 2 G, a keyword w 2 W and outputs the
encrypted indexD.

TABLE 1
Notations

N A universal attribute set f1; . . . ; ng for some nature
number n.

G Access structure space.
W Keyword space comprised of keywords w.
I An attribute set used for an access structure GT 2 G

on an encrypted index and I � N .
S An attribute set for a user secret key SK and S � N .
i An attribute in N either refers to a positive attribute i

or its negation :i.
D An encrypted index for a file.
Q A trapdoor for an intended keyword w 2 W.
rk A proxy re-encryption key set.
PSK A user’s partial secret key.
F An attribute set containing the attributes to be

updated.
D An attribute set including all the attributes inD’s

access structure with the re-encryption keys not being
1 in rk.

V An attribute set containing all the attributes in PSK
with the re-encryption keys not being 1 in rk.

ver A version number.
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� KeyGenðPK;MK;SÞ ! SK. The key generation
algorithm takes as input the current PK, the current
MK, and the attribute set S associated with a particu-
lar user. It outputs the user’s secret key SK.

� ReKeyGenðF;MKÞ ! ðrk;MK0; PK0Þ. The re-
encryption key generation algorithm takes as input the
attribute set F, and the current MK. It outputs a set
of proxy re-encryption keys rk for all the attributes in
N , the updated MK0 and PK0, where all the version
numbers are increased by 1. For the attributes not in
F, set their proxy re-encryption keys as 1 in rk.

� ReEncIndexðD; rk;DÞ ! D0. It takes as input an
index D, rk and the attribute set D. Then it outputs a
new re-encrypted indexD0.

� ReKeyðV; rk; PSKÞ ! PSK0. It takes as input a
user’s partial secret key PSK, rk and the attribute set
V. Finally, it outputs a new PSK0 for that user.

� GenTrapdoorðPK;SK;w0Þ ! Q. The trapdoor gen-
eration algorithm takes as input the current PK, the
user’s SK, a keyword of interest w0 2 W and outputs
the trapdoor Q for the keyword w0.

� SearchðUL;D;QÞ ! search result or ?. The search
algorithm takes as input the user list UL, the index D
and the user’s trapdoor Q. It outputs valid search
result or returns a search failure indicator ?.

4.2 Construction for ABKS-UR

In this section, we will describe the concrete ABKS-UR con-
struction from the viewpoint of system level based on the
above defined algorithms. The system level operations
include System Setup, New User Enrollment, Secure Index Gen-
eration, Trapdoor Generation, Search, and User Revocation.
Notice that each individual system level operation may
invoke one or more low level algorithms.

System setup. The TA calls the Setup algorithm to gener-
ate PK and MK. Specifically, it selects random elements
t1; . . . ; t3n. Define a collision-resistant keyed hash function

H : f0; 1g� ! Zp, and its key is selected randomly and
securely shared between owners and users (for simplicity,
we use it without mentioning the secret key hereafter). Let
Tk ¼ gtk for each k 2 f1; . . . ; 3ng such that for 1 � i � n, Ti

are referred to as positive attributes, Tnþi are for negative
ones, and T2nþi are thought of as don’t care. Let Y be eðg; gÞy.
The public key is PK :¼ he; g; Y; T1; . . . ; T3ni and the master
key is MK :¼ hy; t1; . . . ; t3ni. The initial version number ver
is 1. The TA publishes ðver; PKÞ with the signature of each
component of PK, and retains ðver;MKÞ.

New user enrollment. When receiving a registration
request from a new legitimate user f , the TA first selects a
random xf 2 Zp as a new MK component. Then, the TA
generates a new PK component Y 0f ¼ Y xf and publishes it

with its signature. After that, the KeyGen algorithm is called
to create secret key SK for this user. For every i 2 N , the TA

selects random ri from Zp hence r ¼
Pn

i¼1 ri. K̂ is set as gy�r.

For i 2 S, set Ki ¼ g
ri
ti and Ki ¼ g

ri
tnþi otherwise. Finally, let

Fi be g
ri

t2nþi . The secret key is SK :¼ hver; xf ; K̂; fKi; Figi2N i.
In addition, the server maintains a user list UL containing

all the legitimate users’ identity information for each
dataset. Specifically, the data owner first selects a random

element s from Zp. When a new user f joins in the system
and is allowed to search the dataset, the data owner calls

CreateUL algorithm to set Df ¼ Y 0f
�s and asks the CS to add

the tuple ðIDf;DfÞ into the user list, where IDf is the iden-
tity of the user f .

Secure index generation. Before outsourcing a file to the CS,
the data owner calls EncIndex algorithm to generate a
secure index D for this file. In particular, set D̂ ¼ gs and ~D
to be Y s. Given an access policy GT ¼ V

i2I i, for each i 2 I ,
let Di ¼ Ts

i if i ¼ i and Di ¼ Ts
nþi if i ¼ :i. For each

i 2 NnI , let Di ¼ Ts
2nþi. For some attribute i0 2 N (this fixed

position can be seen as part of public parameter) and a

keyword w 2 W, the data owner sets Di0 to be T
s

HðwÞ
i0 where

without loss of generality, attribute i0 is assumed to be posi-

tive. The encrypted index D :¼ hver;GT; D̂; ~D; fDigi2N i.
Trapdoor generation. Every legitimate user in the system is

able to generate a trapdoor for any keyword of interest by
calling the algorithm GenTrapdoor. Specifically, user f

selects random u 2 Zp. Let Q̂ ¼ K̂u and ~Q ¼ uþ xf . Qi is
denoted as Ku

i and Qfi ¼ Fu
i . Thus, for the same i0 in secure

index generation phase, Qi0 is set to be K
Hðw0Þ�u
i0 , where w0 is

the keyword of interest and Qfi0 ¼ F
Hðw0Þ�u
i0 . The trapdoor

Q :¼ hver; Q̂; ~Q; fQi;Qfigi2N i, where ver is the version num-

ber of SK used for generating this trapdoor.
Search.Upon receipt of a trapdoorQ and the user identity

IDf , 1) the CS finds out if IDf exists on the user list of the
target dataset. If not, the user is not allowed to search over
the dataset; 2) otherwise, the CS continues the Search algo-
rithm with the input of trapdoor Q, encrypted index D and

Df from the user list. We call this process dataset search
authorization. Then, we move onto the fine-grained file-level
search authorization, which includes three cases:

� If ver of Q is less than ver ofD, it outputs ?.
� If ver of Q is greater than ver of D, the algorithm

ReEncIndex is called to update the index first.
� If ver of Q is equal to ver of D, the search process is

performed as follows. For each attribute i 2 I , if
i ¼ i and i 2 S, then

eðDi;QiÞ ¼ e
�
gti �s; g

ri �u
ti
� ¼ eðg; gÞs�u�ri :

If i ¼ :i and i =2 S, then

eðDi;QiÞ ¼ e
�
gtnþi �s; g

ri �u
tnþi

� ¼ eðg; gÞs�u�ri :
For each i =2 I ,

eðDi;QfiÞ ¼ e
�
gt2nþi�s; g

ri �u
t2nþi

� ¼ eðg; gÞs�u�ri :
For the attribute i0 2 N , eðDi0 ; Qi0 Þ is equal to
eðg; gÞs�u�ri0 as well.

If the following equation holds, the user’s attributes sat-
isfy the access structure embedded in the index and w0 ¼ w,

~D
~Q �Df ¼? eðD̂; Q̂Þ �

Yn

i¼1
eðDi;Q

�
i Þ;

where Q�i ¼ Qi if i 2 I and Q�i ¼ Qfi otherwise.
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Correctness Provided that the user is authorized to access
the file and w0 ¼ w, then

eðD̂; Q̂Þ �
Yn

i¼1
eðDi;Q

�
i Þ ¼ e

�
gs; gu�y�u�r

� �
Yn

i¼1
eðg; gÞs�u�ri

¼ eðg; gÞs�u�y�s�u�r � eðg; gÞs�u�r
¼ eðg; gÞs�u�y ¼ Y s�u

¼ Y s�ðxfþuÞ � Y �s�xf ¼ ~D
~Q �Df:

Discussion.We can achieve scalable fine-grained file-level
search authorization by data-owner-enforced attribute-
based access structure on the index of each file. The search
complexity is linear to the number of attributes in the sys-
tem rather than the number of authorized users. Hence, this
one-to-many authorization mechanism is more suitable for
a large scale system, such as cloud. Moreover, the dataset
search authorization by using a per-dataset user list may
accelerate the search process, since the CS can decide
whether it should go into a particular dataset or not. Other-
wise, the CS has to search every file at rest.

User revocation. To revoke a user from current system, we
re-encrypt the secure indexes stored on the server and
update the remaining legitimate users’ secret keys. Note that
these tasks can be delegated to the CS using proxy re-encryp-
tion technique so that user revocation is very efficient. In par-
ticular, the TA adopts the ReKeyGen algorithm to generate
the re-encryption key set rk :¼ hver; frki;valgi2N ;val2fþ;�gi. Let
attribute set F consist of the attributes that need to be
updated, without which the leaving user’s attributes will

never satisfy the access policy. If an attribute i 2 F, rki;þ ¼ t0
i
ti

is for the positive attribute i, and for the negative rki;� is set to

be
t0
nþi
tnþi, where both t0i and t0nþi are randomly selected from Zp.

If i 2 NnF, set rki;val ¼ 1, where val 2 fþ;�g. Then the TA
refines the corresponding components in MK and PK, and
publishes the new PK0 with the signatures. The TA also
sends rk and its signature to the CS.

After receiving rk from the TA, the server checks whether
the version number ver in rk is equal to current ver of the
system (or it can be greater than the current system ver in the
case of lazy re-encryption, see Discussion below). If not, it
discards this re-encryption key set. Otherwise, the CS verifies
rk. Then, the server calls the ReEncIndex algorithm to re-
encrypt the secure indexes in its storage with valid rk. Let D
be the set including all the attributes in the access structures
of secure indexes with the re-encryption keys not being 1 in

rk. For each positive i 2 D, D0i is set as D
rki;þ
i , or D0i ¼ D

rki;�
i

for negative ones. For i =2 D, letD0i be equal toDi. Finally, the

index is updated asD0 :¼ hverþ 1; GT; D̂; ~D; fD0igi2N i.
Furthermore, the server is able to update the remaining

legitimate users’ secret keys by the ReKey algorithm.
Suppose that SKL is a list stored on the CS containing all
the partial secret keys PSK’s of all the legitimate users in
the system. PSK is defined as ðver; fKigi2N Þ. Note that the

CS cannot generate a valid trapdoor with PSK. Let V be
the set including all the attributes in PSK with the re-
encryption keys not being 1 in rk. For each attribute i in V,

denote K0i to be K
rk�1

i;þ
i if i is positive and K

rk�1
i;�

i otherwise.
For each i =2 V, set K0i ¼ Ki. The updated PSK0 ¼ ðverþ 1;

fK0igi2N Þ, which is returned to the legitimate user. User can

also verify whether his secret key is the latest version by
checking eðTi;KiÞ ¼ ðT 0i ; K0iÞ, where T 0i is the attribute
component in the latest PK0. Here we suppose all the attrib-
utes i are positive. Otherwise, use Tnþi and T 0nþi instead in

the equation.
Finally, the server may eliminate ID information of the

revoked user f , i.e., the tuple ðIDf;DfÞ, from all the corre-
sponding user lists.

Discussion. To handle file index update efficiently, we
could adopt the lazy re-encryption technique [16]. The CS
stores the re-encryption key sets rk’s and will not re-encrypt
indexes until they are being accessed. Specifically, the CS
could “aggregate” multiple rk’s and deal with the index
update in a batch manner. For instance, ver ¼ k in D,
ver ¼ j in the latest rk and k < j, to re-encrypt the index, the

CS just calls ReEncIndex once with
Qj

r¼k rk
ðrÞ
i;val.

4.3 Conjunctive Keyword Search

Data user may prefer the returned files containing several
intended keywords with one search request, which is
referred to as conjunctive keyword search. Similar to [13],
[14], our proposed ABKS-UR scheme is able to provide con-
junctive keyword search functionality readily as follows.

Di0 is defined as g

s�ti0
Pwj2WHðwjÞ or g

s�ti0
	wj2WHðwjÞ, where 	 denotes

XOR operation. The components Qi0 and Qfi0 in the trap-
door are generated accordingly. It is worth noting that this
method has almost the same efficiency as the single-key-
word ABKS-UR scheme, regardless of the number of simul-
taneous keywords.

4.4 Security Analysis

1) Keyword semantic security. In this paper, we formally
define a semantic security game for ABKS-UR. We first give
the cryptographic assumption that our scheme relies on.

Definition 2 (The DBDHAssumption [34]). Let a; b; c; z2 Zp

be chosen at random and g be a generator of G. The DBDH
assumption is that no probabilistic polynomial-time adversary

B can distinguish the tuple A ¼ ga; B ¼ gb; C ¼ gc; eðg; gÞabc
from the tuple A ¼ ga; B ¼ gb; C ¼ gc; eðg; gÞz with non-
negligible advantage. The advantage of B is defined as follows,

jPr½BðA;B;C; eðg; gÞabcÞ ¼ 0
 � Pr½BðA;B;C; eðg; gÞzÞ ¼ 0
j;

where the probability is taken over the random choice of the
generator g, the random choice of a; b; c; z in Zp, and the ran-
dom bits consumed by B.
The semantic security game between an adversary A and

a challenger B is defined as follows.
Init. The adversary A submits a challenge access policy

GT , a version number ver� and ver� � 1 attribute sets

fFðrÞg1�r�ver��1 to the challenger B.
Setup. The challenger B runs Setupð�;NÞ to obtain PK

andMK for version 1. For each version r 2 f1; . . . ; ver� �1g,
B runs ReKeyGenðF;MKÞ. Then he publishes frkðrÞg1�r�ver��1
to A, where rkðrÞ is defined as the re-encryption key set of

version r. Given frkðrÞg1�r�ver��1, the adversary A is able to

compute PK for the corresponding version rþ 1.
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Phase 1. By submitting any keyword w 2 W, the adver-
sary A is allowed to request the challenger B to generate
trapdoors of any version from 1 to ver� polynomial times
(in �). The only restriction is that the attribute set associated
with each trapdoor query submitted by A does not satisfy
the challenge access structure GT .

Challenge. Upon receipt of challenge keyword w0; w1 2 W
of the same length from the adversary A, B flips a random
coin m 2 f0; 1g and get a challenge index Dm  EncIndex

ðPK;GT;wmÞ, where GT is the challenge access structure
and PK is of version ver�. B returnsDm to A.

Phase 2. Same as Phase 1.
Guess. Adversary A submits his guess m0 of m.

Definition 3 (IND-sCP-CKA Security). The proposed ABKS-
UR scheme is IND-sCP-CKA secure if for all probabilistic
polynomial-time adversaryA, the advantageAdvIND�sCP�CKA

A
in winning the semantic security game is negligible.

AdvIND�sCP�CKA
A ¼ Pr½m0 ¼ m
 � 1

2
:

Notice that the trapdoor query oracle in Phase 1 implic-
itly includes the secret key query oracle, which may send
the partial secret key (see Section 4.2) back to the adversary.
Since the adversary A is allowed to obtain all the re-encryp-
tion keys, he is able to update indexes, secret keys and trap-
doors on his own such that we do not let challenger answer
these queries in Phases 1 and 2. Moreover, in the selective
model, our semantic security game allows the adversary to
query any keywords at Phases 1 and 2 as long as the attri-
bute sets associated with the queried trapdoors do not sat-
isfy the challenge access policy GT .

We give the following theorem, and then prove our
ABKS-UR construction IND-sCP-CKA secure in the stan-
dard model.

Theorem 1. If a probabilistic polynomial-time adversary wins the
IND-sCP-CKA game with non-negligible advantage �, then
we can construct a simulator B to solve the DBDH problem
with non-negligible advantage �

2.

Proof. The DBDH challenger first randomly chooses
a; b; c; z 2 Zp and a fair coin n 2 f0; 1g. It defines Z to be

eðg; gÞabc if v ¼ 0, and eðg; gÞz otherwise. Then the simula-

tor B is given a tuple ðA;B;C; ZÞ ¼ ðga; gb; gc; ZÞ and
asked to output n. The simulator B now plays the role of
challenger in the following game.

Init. In this phase, simulator B receives the challenge
access structure GT ¼ V

i2I i, a version number ver� and
ver� � 1 attribute sets fFðrÞg1�r�ver��1 from adversary A.

Setup. For PK of version 1, Simulator B sets Y to be

eðA;BÞ ¼ eðg; gÞa�b, which implicitly defines y ¼ a � b.
Choose random x ¼ u 2 Zp and define Y 0 to be

eðA;BÞu ¼ eðg; gÞa�b�u. For each i 2 N , B selects random
ai;bi; gi 2 Zp, and outputs the following public
parameters.

For i 2 I , Ti ¼ gai , Tnþi ¼ Bbi , T2nþi ¼ Bgi if i ¼ i;

Ti ¼ Bai , Tnþi ¼ gbi , T2nþi ¼ Bgi if i ¼ :i.
For i =2 I , Ti ¼ Bai , Tnþi ¼ Bbi , T2nþi ¼ ggi .
For each attribute set FðrÞ; 1 � r � ver� � 1, B gener-

ates the re-encryption key rkðrÞ and the PK of that

version. For each attribute i 2 FðrÞ, rk
ðrÞ
i;val where val 2

fþ;�g, is randomly selected from Zp. T
ðrþ1Þ
i ¼ ðT ðrÞi Þrk

ðrÞ
i;þ ,

T
ðrþ1Þ
nþi ¼ T

ðrÞ
nþi, and T

ðrþ1Þ
2nþi ¼ T

ðrÞ
2nþi if attribute i is positive.

Otherwise, T
ðrþ1Þ
i ¼ T

ðrÞ
i , T

ðrþ1Þ
nþi ¼ ðT ðrÞnþiÞrk

ðrÞ
i;� , and

T
ðrþ1Þ
2nþi ¼ T

ðrÞ
2nþi. Then, for each i =2 FðrÞ, set rkðrÞi;val ¼ 1 and

the remaining public parameters of version rþ 1 are the
same with those of version r. Finally, simulator B pub-

lishes rkðrÞ ¼ hr; frkðrÞi;valgi2FðrÞ;val2fþ;�gi to A.
Phase 1. Without loss of generality, assume that adver-

sary A submits a keyword wl and a set S � N to B for
version r, where 1 � r � ver� and S does not satisfy GT .
B uses the collision-resistant hash function to output
HðwlÞ ¼ hl. Since S does not satisfy GT , a witness attri-
bute j 2 I must exist. Thus, either j 2 S and j ¼ :j, or
j =2 S and j ¼ j. Without loss of generality, we assume

j =2 S and j ¼ j.

Simulator B chooses random fr0ig1�i�n 2 Zp. Set rj ¼
a � bþ r0j � b and ri ¼ r0i � b if i 6¼ j. Denote r ¼Pn

i¼1 ri ¼
a � bþPn

i¼1 r
0
i � b. B defines u to be a random number �

selected from Zp. As such, Q̂ is defined to be

gy�u�r�u ¼ g�
Pn

i¼1 r
0
i
�b�� ¼ B�

Pn

i¼1 r
0
i
��. The ~Q component of

the trapdoor is defined to be xþ u ¼ u þ �.
By defining rk

ðrÞ
i;val ¼ 1 where val 2 fþ;�g if i =2 FðrÞ, B

could compute the followings for each i 2 N : for

2 � r � ver�, T
ðrÞ
i ¼ ðT ð1Þi Þrk

ð1Þ
i;þ�rk

ð2Þ
i;þ���rk

ðr�1Þ
i;þ ¼ ðT ð1Þi Þ

Qr�1
o¼1 rk

ðoÞ
i;þ ,

and T
ðrÞ
nþi ¼ ðT ð1ÞnþiÞrk

ð1Þ
i;��rk

ð2Þ
i;����rk

ðr�1Þ
i;� ¼ ðT ð1ÞnþiÞ

Qr�1
o¼1 rk

ðoÞ
i;� .

B denotes R
ðrÞ
i ¼

Qr�1
o¼1 rk

ðoÞ
i;þ and R

ðrÞ
nþi ¼

Qr�1
o¼1 rk

ðoÞ
i;�.

Simulator B sets

Qj ¼ A

�

bj �RðrÞjþ1 � g
r0
j
��

bj �RðrÞjþ1 ¼ g

a�bþr0
j
�b

b�bj �RðrÞjþ1
��
¼ g

rj �u
b�bj �RðrÞjþ1 :

For i 6¼ j, 1) i 2 S. Qi ¼ B

r0
i
��

ai �RðrÞi ¼ g

ri �u
ai �RðrÞi if i 2 I ^ i ¼ i;

Qi ¼ g

r0
i
��

ai �RðrÞi ¼ g

ri �u
b�ai �RðrÞi if ði 2 I ^ i ¼ :iÞ _ i =2 I . 2) i =2 S.

Qi ¼ B

r0
i
��

bi �RðrÞnþi ¼ g

ri�u
bi�RðrÞnþi if i 2 I ^ i ¼ :i; Qi ¼ g

r0
i
��

bi �RðrÞnþi ¼ g

ri �u
b�bi �RðrÞnþi

if ði 2 I ^ i ¼ iÞ _ i =2 I .
Similarly, let Qfj ¼ A

�
gj � g

r0
j
��

gj ¼ g

a�bþr0
j
�b

b�gj �� ¼ g
rj�u
b�gj . For

fQfigi6¼j, we have 1) i 2 I . Qfi ¼ g
r0
i
��
gi ¼ g

ri �u
b�gi . 2) i =2 I .

Qfi ¼ B
r0
i
��
gi ¼ g

ri �u
gi .

Without loss of generality, assume i0 2 S \ I and

i0 ¼ i0. Simulator B sets Qi0 ¼ B

r0
i0 ���hl

ai0 �R
ðrÞ
i0 ¼ g

ri0 �u�HðwlÞ
ai0 �R

ðrÞ
i0 .

Challenge. Upon receiving the challenge keywords
w0; w1 from adversary A, simulator B flips a random coin
m 2 f0; 1g and then encrypts wm with the challenge gate
GT . From the collision-resistant hash function H, simula-
tor B obtains HðwmÞ ¼ hm. For version ver� and i 2 I , Di

is defined to be Cai�Rðver
�Þ

i if i ¼ i and Cbi�Rðver
�Þ

nþi if i ¼ :i.
For i =2 I , letDi ¼ Cgi . Without loss of generality, assume

i0 2 I and i0 ¼ i0 such that Di0 ¼ C
ai0 �R

ðver�Þ
i0

hm . Finally, B sets

D̂ ¼ C; ~D ¼ Z andD ¼ Z�u.
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Phase 2. Same as Phase 1.
Guess. Adversary A submits m0 of m. If n ¼ 1, adver-

sary A cannot acquire any advantage in this semantic
security game but a random guess. Therefore, we have

Pr½m 6¼ m0jn ¼ 1
 ¼ 1
2. When m 6¼ m0, simulator B outputs

n0 ¼ 1, such that Pr½n0 ¼ njn ¼ 1
 ¼ Pr½n0 ¼ 1jn ¼ 1
 ¼ 1
2. If

n ¼ 0, a valid D is given to adversary A. He can win this
game with non-negligible advantage �. Hence,

Pr½m ¼ m0jn ¼ 0
 ¼ 1
2þ �. When m ¼ m0, simulator B out-

puts n0 ¼ 0, we have Pr½n0 ¼ njn ¼ 0
 ¼ Pr½n0 ¼ 0jn ¼ 0
 ¼
1
2þ �. The advantage AdvDBDH

A of simulator B in the

DBDH game is Pr½n0 ¼ n
� 1
2 ¼ Pr½n0 ¼ njn ¼ 1
Pr½n ¼ 1
 þ

Pr½n0 ¼ njn ¼ 0
Pr½n ¼ 0
 � 1
2 ¼ 1

2 � 12þ ð12þ �Þ � 12� 1
2 ¼ �

2 . tu
As per the above theorem, we can conclude that our pro-

posed scheme is semantically secure in the selective model.
Note that malicious users cannot launch collusion attack to
generate a new valid secret key or trapdoor, which has been
implicitly proved because the adversary A in our security
game has the same capability as the malicious users, i.e., he
can query different secret keys.

2) Trapdoor unlinkability. To generate a trapdoor, the data
user chooses a different random number u to obfuscate the
trapdoor such that the CS is visually unable to differentiate
two or more trapdoors even produced with the same key-
word. Thus, the ABKS-UR can provide trapdoor unlinkabil-
ity property.

5 AUTHENTICATED SEARCH RESULT

Data users may desire the authenticated search result to
boost their confidence in the entire ABKS-UR search pro-
cess, especially when the result contains errors that may
come from the possible storage corruption, software mal-
function, and intention to save computational resources by
the server, etc. Similar to [25], we are able to assure data
user of the authenticity of the returned search result by
checking its correctness (the returned search result indeed
exist in the dataset and remain intact), completeness (no qual-
ified files are omitted from the search result), and freshness
(the returned result is obtained from the latest version of
the dataset). The main idea of the verification scheme is to
allow the CS to return the auxiliary information containing
the authenticated data structure other than the final search
result, upon which the data user is capable of doing result
authenticity check. In what follows, we elaborate on the
concrete scheme.

Authenticated data structure preparation. In order to let the
user check if he is a legitimate user for a particular dataset,
the data owner can simply sign the corresponding user
list UL. Or, to avoid disclosing other users’ membership
information, the TA may generate the keyed-hash value
hxf ðIDfÞ for each authorized user f . The data owner can

insert the hash values into a bloom filter BFUL [26] based on
these users’ membership, and then signs it to sðBFULÞ.
Next, the data owner prepares another bloom filter BFW for
the keywords appearing in the dataset to enable the data
user quickly find out the existence of the intended keyword.
Specifically, the TA generates a hash key k and gives it to
the data owner. He then encrypts it with symmetric key xf

for each legitimate user. Note that the output ciphertext
Exf ðkÞ can be signed and added into the user list UL later

by the data owner. Then, the data owner obtains a key-
word bloom filter BFW by inserting the keyed-hash value
hkðwÞ of every keyword w in the dataset, and signs it to
sðBFW Þ. When preparing the encrypted indexes for the
dataset to be outsourced, the data owner uses inverted
index [27] to organize the entire dataset, i.e., all the
encrypted files l with the secure indexes containing the
same keyword w are placed in the same file list Lw ¼
f<Dl1;w ; l1>;<Dl2;w ; l2>; . . .<Dlq;w ; lq>g. Upon each list Lw,

the data owner generates the list signature as follows: first,
for every tuple < Dli;w ; li > in Lw where 1 � i � q, he com-

putes the hash value hli ¼ HðDli;w jjHðliÞÞ. Then the data

owner computes the hash value hLw for the list Lw. For
example, there are three files l1; l2 and l3 in this particular
list. The data owner calculates h1 ¼ hl1 , h2 ¼ Hðhl2 jjh1Þ,
and hLw ¼ h3 ¼ Hðhl3 jj h2Þ. Finally, he outsources the

BFUL, BFW , all the file lists Lw and their signatures
sðBFULÞ, sðBFW Þ, sðhLwÞ to the server.

Search phase. In the search phase, the CS returns the search
result along with the auxiliary information for result authen-
ticity check later by the data user. The auxiliary information
includes all the user list bloom filters BFUL of the datasets
stored on the server (see the discussion below), the keyword
bloom filters BFW of the datasets that the user is authorized
to access, the file list L0w for the intended keyword w if the

search result contains files from this dataset, the tuple

ðDf;Exf ðkÞÞ in each related UL and all the corresponding

signatures. Notably, if the search result does not contain files
from this dataset, it is not necessary to return the corres-
ponding file list. Otherwise, the CS generates L0w as follows.

For the file li in Lw but not in the search result, the CS merely
computes its hash value hðliÞ and puts the tuple
<Di;w; hðliÞ> in L0w. For example, when Lw ¼ f<Dl1;w ; l1>;

<Dl2;w ; l2>;<Dl3;w ; l3>g and only l1 is included in the final

search result, the CS will sends back L0w ¼ f<Dl1;w ; l1>;

<Dl2;w ; hðl2Þ>;<Dl3;w ; hðl3Þ>g to the user.
Result authentication. On receipt of the search result, the

user can check its authenticity as follows. At first, the user
does the membership test with all the verified user list
bloom filters BFUL. For each dataset that the user is autho-

rized to access, he verifies the tuple ðDf;Exf ðkÞÞ from this

dataset, and decrypts Exf ðkÞ with xf . Then, he verifies the

keyword bloom filter BFW of this dataset and exploits the
hash key k to check whether the keyword of interest w
indeed exists. If not, the user turns to another keyword
bloom filter of the next access-granted dataset. Otherwise,
he goes into the specific file list L0w. For simplicity, we still
use the above mentioned example. The user first computes
tuple hash values hl1 , hl2 and hl3 respectively. He then gen-

erates the hash chain to obtain the file list hash value hLw ,
and verifies sðhLwÞ. Next, he can search this list with his

trapdoor and corresponding Df from the CS to check if all
the matching files have been returned. Thus, the data user
can ensure the authenticity of the returned search result.

Discussion. Note that if it is the first time for a user f to
perform search operation, the CS will send the tuples
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ðDf;Exf ðkÞÞ in all related UL and all the user list bloom fil-

ters to this user and he may keep them to avoid the commu-
nication overhead in the following searches. To revoke a
particular user, data owners will update the corresponding
user list bloom filters and send them to the CS. After that,
the legitimate user will replace the corresponding bloom fil-
ters for the updated ones received from the CS if he requires
the server to search again. On the other hand, if the user
repeats the search with the keyword queried before, it is not
necessary for the CS to return the auxiliary information1

and the user merely needs to compare the result with the
search history. Otherwise, all the relevant BFW and L0w
should be returned to user for result verification.

In this paper, we create an authenticated data structure
using bloom filter, inverted index, hash and signature tech-
niques to organize the outsourced data in the server. The
data user can search over this structure to verify the
returned search result, since all the signatures can only be
generated by data contributors. By checking verified BFUL,
BFW and Lw, the user is assured of the existence and integ-
rity of all the returned files, and search result does not
exclude any qualified matching files. Hence, we can achieve
the verification design goals, i.e., correctness and complete-
ness. Freshness can be simply realized by adding time stamp
into the corresponding signatures. Thus, we make the
ABKS-UR scheme verifiable and the authenticity of the
returned search result is guaranteed.

6 PERFORMANCE EVALUATION

In this section, we will evaluate the performance of our pro-
posed ABKS-UR scheme and search result verification
mechanism by real-world dataset and asymptotic computa-
tion complexity in terms of the pairing operation P, the
group exponentiation E and the group multiplication M in
G, the group exponentiation E1, the group multiplicationM1

in G1 and hash operation H used in bloom filters. Note that
we can realize the encryption and the signature operation
by any secure symmetric encryption and signature techni-
ques respectively, e.g., AES encryption and RSA signature,
which incur fixed computation overhead, and here we do
not consider them. We also ignore the hash operation for
ABKS-UR as it is much more efficient than other involved
computations. As for search result verification, the hash
operation will be counted for it is the main computation cost
there. Suppose there exist n attributes in the proposed
scheme. The numerical performance evaluation is shown in
Table 2. Moreover, to evaluate the key operations of the pro-
posed scheme, we use the real-world dataset, i.e., the Enron
Email Dataset [35], which contains about half million files
contributed from 150 users approximately. In the literature,
there are few existing works on attribute-structure based
authorized keyword search with experimental results. We
will compare our ABKS-UR scheme with the predicate
encryption based APKS scheme [21] in terms of search effi-
ciency. We conduct our experiment using C and the pairing-
based cryptography library [36] on a Linux Server with Intel
Core i3 Processor 3.3 GHz. We adopt the type A elliptic
curve of 160-bit group order, which provides 1,024-bit

discrete log security equivalently (our scheme can also be
adapted into any secure asymmetric pairing version).

6.1 System Setup

At this initial phase, the TA defines the public parameter,
and generates PK and MK. The main computation over-
head is 3n exponentiations in G, one exponentiation in G1

and one pairing operation on the TA side. As shown in
Fig. 2a, the time cost for system setup is very efficient and is
linear to the number of attributes in the system.

6.2 New User Enrollment

When a new legitimate user wants to join in the system, he
has to request the TA to generate the secret key SK, which
needs 2nþ 1 exponentiations in G. The TA also needs one
exponentiation in G1 to generate a new PK component for
the user. A data owner may also allow the user to access the
dataset by adding him onto the corresponding user list,
which incurs one exponentiation in G1. It is obvious that the
time cost to enroll a new user is proportional to the number
of attributes in the system.

6.3 Secure Index Generation

The size of secure index is constant if the number of attrib-
utes is pre-fixed in the system setup phase regardless of the
actual number of keywords in a file for both single keyword
and conjunctive keyword search scenarios. Moreover, the
data owner approximately needs ðnþ 1ÞEþ E1 to generate
a secure index for a file. Furthermore, we evaluate the prac-
tical efficiency of creating secure indexes for 10,000 files, as
shown in Fig. 2b. It exhibits the expected linearity with the
number of attributes in the system. When there exist 30
attributes in the system, the data owner would spend about
8 minutes encrypting the indexes for 10,000 files. Note that
this computational burden on the data owner is a one-time
cost. After all the indexes outsourced to the CS, the follow-
ing index re-encryption operation is also delegated to the
server. Thus, the overall efficiency for encrypting index is
totally acceptable in practice.

6.4 Trapdoor Generation

With the secret key, data user is free to produce the trap-
door of any keyword of interest, which requires about

TABLE 2
Numerical Evaluation of ABKS-UR and Result Verification

Operation Computation complexity

System Setup 3nEþ E1 þ P
New User Enrollment ð2nþ 1ÞEþ 2E1

Secure Index Generation ðnþ 1ÞEþ E1

Trapdoor Generation ð2nþ 1ÞE
Per-index Search ðnþ 1ÞPþ ðnþ 2ÞM1 þ E1

ReKeyGen xðMþ EÞ; 1 � x � n
ReEncIndex yE; 1 � y � n
ReKey zE; 1 � z � n

Data preparation ðak1 þ bk2 þ ð3q � 1ÞbÞH
Search phase ðq � tÞH
Result authentication1 ðmk1 þ k2 þ 2q þ t� 1ÞHþ tS2

1 This is for a new intended keyword search over one authorized dataset. 2

S denotes the per-index search operation.

1. This is doable since the CS is able to track the access pattern.
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2nþ 1 group exponentiations in G. Moreover, the experi-
mental result in Fig. 2 c shows that our proposed authorized
keyword search scheme enjoys very efficient trapdoor
generation. In accordance with the numerical computation
complexity analysis, the trapdoor generation will need
more time with the increased number of attributes.

6.5 Search

To search over a single encrypted index, the dominant com-
putation of ABKS-UR is nþ 1 pairing operations, while
APKS [21] needs nþ 3 pairing operations. Fig. 2d shows the
practical search time of ABKS-UR and APKS on a single
secure index with different number of attributes respec-
tively. With the same number of system attributes, ABKS-
UR is slightly faster than APKS. Moreover, compared with
APKS, ABKS-UR allows users to generate trapdoors inde-
pendently without resorting to an always online attribute
authority, and it has a broader range of applications due to
the arbitrarily-structured data search capability. Notice that
the search complexity of our scheme will varies a lot for dif-
ferent data users, since the dataset search authorization only
allows users on the user lists to further access the corre-
sponding datasets. Assume that there exist 10,000 files and
30 system attributes. In the worse case of search over every
file in the storage, the CS, with the same hardware/software
specifications as our experiment, requires less than 5
minutes to complete the search operation. Thus, with a
more powerful cloud, our proposed ABKS-UR scheme
would be efficient enough for practical use.

6.6 User Revocation

As the server can efficiently eliminate the revoked user’s
identity information from the corresponding user lists, we
do not show it in Table 2. Instead, we calculate the main
computation complexity of ReKeyGen, ReEncIndex, and
ReKey. To update the system, the TA uses the algorithm
ReKeyGen to produce the new version of MK0 and PK0,
and the re-encryption key set rk. Depending on the number
of attributes to be updated, generating rk requires mini-
mum M to maximum nM operations. Likewise, the compu-
tation overhead for PK0 is within the range from E to nE.
Moreover, the CS calls the ReEncIndex algorithm to re-
encrypt the secure indexes at its storage. Each index update
needs E to nE operations in G, which is also the computa-
tion overhead range for the CS to update a legitimate user’s
secret key by algorithm ReKey.

6.7 Authenticated Search Result

Other than the computation cost for ABKS-UR, a data
owner still needs to prepare a user list bloom filter BFUL, a
keyword bloom filter BFW and file lists Lw for his out-
sourced dataset. Assume for this dataset there are a autho-
rized users, b extracted keywords, and average q files in
each Lw. Let k1 and k2 be the number of hash functions used
to insert a user and a keyword into BFUL and BFW respec-
tively. Thus, the main computation cost for these data prep-
aration is ak1 þ bk2 þ ð3q � 1Þb efficient hash operations as
shown in Table 2.

At the search phase, the CS only needs to computes file list
L0w for each authorized dataset for the user. Table 2 shows
that every file list can be generated by q � t hash operations,
where t is the average number of matching files inL0w.

If the data user queries a keyword searched before,
the CS will only return the search result and the user
will verify them by checking the search history (see the
discussion in Section 5). Therefore no extra communica-
tion and computation overhead is introduced in this situ-
ation. Otherwise, in the worst case, the user should
check all the returned BFUL, BFW and L0w. As shown in
Table 2, suppose there are m datasets stored on the
server and the user is only authorized to access one
dataset, the verification cost is mk1 þ k2 þ 2q þ t� 1 hash
operations and t per-index search operations. In order to
save the communication cost between the CS and the
user, the user list bloom filters BFUL can be stored on
the user side after he receives them from the server (see
the discussion in Section 5). For the BFUL of 1 percent
false positive rate and 100 outsourced datasets, the corre-
sponding storage cost is shown in Table 3. In this worst
case that 10,000 authorized users are inserted to each
BFUL, the user only needs about 1 MB storage space to
keep the user list bloom filters of all the datasets. On the
other hand, the size of a bloom filter will be slightly
increased given a smaller false positive rate, e.g., it only
needs 1.79 MB to store all the BFUL of 0:1 percent false
positive rate in the aforementioned worst case situation.

Fig. 2. Performance evaluation on ABKS-UR. (a) Time cost for system setup. (b) Secure index generation time for 10,000 files. (c) Trapdoor genera-
tion time. (d) Time cost for search over a single index.

TABLE 3
Storage Cost for 100 BFUL of 1 Percent False Positive Rate

# of inserted users 2,000 4,000 6,000 8,000 10,000
Size (MB) 0.24 0.48 0.72 0.96 1.19
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To realize the verifiable ABKS-UR, except that the
user may need to search the verified data structure (the
computational complexity is much smaller than that of
search on the server), data owner and cloud server have
minimal extra computation overhead, i.e., efficient hash
function evaluation.

7 CONCLUSION

In this paper, we design the first verifiable attribute-based
keyword search scheme in the cloud environment, which
enables scalable and fine-grained owner-enforced encrypted
data search supporting multiple data owners and data users.
Compared with existing public key authorized keyword
search scheme [14], our scheme could achieve system scal-
ability and fine-grainedness at the same time. Different from
search scheme [21] with predicate encryption, our scheme
enables a flexible authorized keyword search over arbi-
trarily-structured data. In addition, by using proxy re-
encryption and lazy re-encryption techniques, the proposed
scheme is better suited to the cloud outsourcing model and
enjoys efficient user revocation. On the other hand, we make
the whole search process verifiable and data user can be
assured of the authenticity of the returned search result. We
also formally prove the proposed scheme semantically
secure in the selectivemodel.
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